

UGANDA BUSINESS AND TECHNICAL EXAMINATIONS BOARD

TDIT 114	PROGRAMME NATIONAL DIPLOMA IN INFORMATION COMMUNICATION TECHNOLOGY	DATE WEDNESDAY, 14 TH DECEMBER 2022	
in (4)	YEAR I, SEMESTER I	or on a find, modern	
SERIES NOV/DEC 2022	PAPER NAME COMPUTER ARCHITECTURE	TIME ALLOWED 3 HOURS	

YOU SHOULD HAVE THE FOLLOWING FOR THIS EXAMINATION

Answer booklet

Ball point pen

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of two sections A and B.
- 2. Section A consists of three questions. Answer only two questions
- 3. Section B consists of four questions. Answer three questions only
- 4. All answers to each question should begin on a fresh page.
- 5. Do not write anywhere on this question paper.
- 6. All rough work should be done in the official answer booklet provided.
- 7. Read other instructions on the answer booklet.

SECTION A- (40 MARKS)

Answer only two questions from this section.

Question One

A computer system has five core functions that it must perform for it to be fully appreciated as such a system.

- (a) Define the meaning of the system stated above. (02 marks)
- (b) Explain **five** core functions of the system stated above. (10 marks)
- (c) For each of the stated function in 1(b), mention an example of a component in the system that is responsible for that functionality. (04 marks)
- (d) Give the purpose of each of the component mentioned in 1(c) above to the system.

 (04 marks)

Question Two

(a) Differentiate between registers and system buses as used in computing.

(04 marks)

(b) Using a well labeled illustration of the top-level computer components, explain the functionality of each of the sub-components that make-up the CPU. (16 marks)

Question Three

- (a) Distinguish between **binary-coded-decimal codes** and **alphanumeric codes** as used in computer architecture. (04 marks)
- (b) Construct a table showing the binary representation, hexadecimal representation, and the binary-coded-decimal representation of all decimal numbers from 0 to 15.

(16 marks)

SECTION B - (60 MARKS)

Answer only three questions from this section.

Question Four

Analyze the table below and answer the questions that follow:

Table: 1 Truth Table on Four-Input Circuit

A	B	C	D	x
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- (a) State the output of the input circuit above when all inputs except B are 1. (02 marks)
- (b) State the output for the input conditions: A = 1, B = 0, C = 1, D = 0.

(02 marks)

- (c) Write the Boolean expression that will be realized from the table above assuming all the inputs were added together to give the output (x). (06 marks)
- (d) Draw the circuit diagram representation for the Boolean expression in 4(c).

(10 marks)

Question Five

(a)	Distinguish between the terms Flip-Flop and shift register as use	d in computer
	architecture.	(04 marks)
(b)	Draw the circuit diagram and the graphic symbol of the JK Flip-Flop.	(10 marks)

(c) In a tabular form, show the JK Flip-Flop characteristic table. (06 marks)

Question Six

(a) Explain the functionality of each of the following in a computer system.

(i)	Motherboard		(02 marks)
(ii)	Central processing unit		(02 marks)
(iii)	CMOS battery		(02 marks)
(iv)	North bridge	0 0	(02 marks)
(v)	Cache memory		(02 marks)

(b) Mention five ports that are found on a computer system, stating their purpose on the system. (10 marks)

Question Seven

- (a) Differentiate between a read-only memory (ROM) and a programmable logic device (PLD) as used in computer architecture. (04 marks)
- (b) Explain **three** types of programmable logic devices (PLD's) that are normally used when drawing the architecture of a computer. (06 marks)
- (c) Define the term **code converter** as used in computer architecture. (02 marks)
- (d) Design a code converter (use a tabular format) that converts a decimal digit from the 8, 4, -2, -1 code to BCD. (08 marks)

END